
Advanced Cryptography in ColdFusion
Justin Scott, CISSP

Chief Information Security Officer, Smart Communications

Adobe ColdFusion Summit
October 1, 2024

Hi, I’m Justin Scott

● BBS sysop in the mid 1990’s
● Won a copy of Allaire ColdFusion 4 at SysCon in 1999
● Architect and developer for hundreds of applications
● Network, Systems, and Database admin
● Smart Communications since 2009 as IT Director, VP of Technology,

and most recently Chief Information Security Officer
● Patent awarded as a co-inventor on a system for secure mail

processing at correctional facilities
● CISSP

First, Common Questions

Three Years to Grow

No Special Method
(Just genetics)

No Special Routines
(I wake up like this)

Let’s Get
TECHNICAL!

What is Cryptography?

The art and science of “secret writing”

Ensuring that data cannot be read if
exposed to the public, typically through a

symmetric or asymmetric encryption
algorithm.

Confidentiality

Ensuring that the data came from a specific
source, such as a digital signature on an
email or code signing, typically by using

public key infrastructure to verify the author.

Authenticity

Ensuring that a user is properly
authenticated and authorized to access

data, typically through signed session
tokens.

Access Control

Ensuring that a sender or receiver cannot
deny that a message was sent or received,
typically by using public key infrastructure to
sign messages or read receipts.

Non-Repudiation

Ensuring that data has not been tampered
with, typically by applying a secure hashing
algorithm to generate a one-way fingerprint
of the data.

Integrity

Typical Uses of Cryptography

● Password Hashing
● Protect Sensitive/Private Information
● Store Documents
● Access Tokens

Hashing
Hash, from French culinary terminology meaning “to chop and mix.”

Takes data of arbitrary length and generates a fixed-length output.

Output can be used as a “fingerprint” of the input data.

Small changes to the input should generate vastly different output.

Good hashing algorithms avoid collisions.

Primarily used for integrity checks (e.g. has this data changed?).

Also known as creating a “digest” of the data.

Password Hashing

Best practice is to store passwords as a one-way
hash using a secure hashing algorithm.

ColdFusion provides several functions to enable
this common use case.

Ye Olden Times...

A Slightly Better Approach

Password Hashing

Simple example:

Output (pre CF 2023 update 8 or 2021 update 14 – CFMX_COMPAT [MD5*]):

E261DB47EFBA4DBEB805B7D4A73CD27E

Password Hashing

Simple example:

Output (CF 2023 update 8 or 2021 update 14 and after – SHA-256):

FE49AF781B98D482B4D5DA40203D44573F12E4F5754A5A8B2CC85A7246074FDD

Password Hashing

We can also specify an algorithm:

Output:

4896FDA84CF5F079A32755579FE6195D538877E5B7055847F209131E63E05E4A80C
7446C6D6D2A733381F287DB8164531E437774FF01F60EBD16B3C524B030B8

Algorithm Options for hash(“my1337p@ssword”, algorithm);

MD2 (Output: 128bits, 16 bytes, 32 hex characters):
98F713E711782949C410951DF61A6F2D

MD5 / CFMX_COMPAT* (Output: 128bits, 16 bytes, 32 hex characters):
E261DB47EFBA4DBEB805B7D4A73CD27E

SHA / SHA-1 (Output: 160bits, 20 bytes, 40 hex characters):
22997B8C8CBD8C682360CF064E87AA28DA6E7F8D

RIPEMD160 (Output: 160bits, 20 bytes, 40 hex characters):
F129DB8A056298A338EADAB814DF600DB18E2780

SHA-224 (Output: 224bits, 28 bytes, 56 hex characters):
0AA3CE433C3B506F4BCD5AF087A0F1ACAB83E528789B5DEB44A13B5F

SHA-256 (Output: 256bits, 32 bytes, 64 hex characters):
FE49AF781B98D482B4D5DA40203D44573F12E4F5754A5A8B2CC85A7246074FDD

SHA-384 (Output: 384bits, 48 bytes, 96 hex characters):
10E0DB52B0332ACBE3C4D00B58F24C01F11CE1902C41D03C28CF6F11B7129A40A47CCA7081A97893B143011E34776B72

SHA-512 (Output: 512bits, 64 bytes, 128 hex characters):
4896FDA84CF5F079A32755579FE6195D538877E5B7055847F209131E63E05E4A80C7446C6D6D2A733381F287DB8164531E4
37774FF01F60EBD16B3C524B030B8

Hashing Alone Isn’t
Enough

We Need to Add Some
SALT

Giving every password a unique salt ensures
that no two stored hashes will be the same

even if the passwords are the same.

Unique Salt Per Password

Salts should be long to avoid collisions.
Use a value of at least 128 bits (16 bytes).

Don’t use the user ID primary key from the
database.

Use a lot of Salt

createUUID();
generateSecretKey(“AES”, 128);

Some Options

Every time the password is changed,
generate a new salt value. Do not reuse
salts.

New Password = New Salt

The salt can be stored in plain text in the
database alongside the password hash.

Salts Aren’t Secret

Salted Hash Example

Output (512bits, 64 bytes, 128 hex characters):

33C2EEAACED5F7D3E46E12EBBAF8B6EFB9F1898D59CDE373E5B5E2CBDD894E3
F69574B02415F1E721142054F91BD7A76D260E569592004B532820BE14C55CC9C

Now we can store the salt value and the password hash in the database. At login, repeat
the hash using the password input and the stored salt for comparison.

We Need to Add a
Work Factor

Hash with Iterations

The hash() function also provides a parameter for additional iterations.

This now takes longer; ~370ms on my test server

Password-Based Key Derivation

ColdFusion provides the generatePBKDFKey() function which does more
work than a hash() alone, and also supports an iteration count.

This takes even longer with half as many iterations; ~700ms on my server

Password-Based Key Derivation

Output is encoded using base64 vs. hex for hash().

Output:
Y40YYsMWxv7DGb681oL6/eQFsElHE78549ReKyPncP634ag878SYK0nRwSPaf3FN7R2o2x324fdIlJZD7dfeXQ==

Add Some PEPPER to
That Hash

Peppered Hash Example

Output (512bits, 64 bytes, 128 hex characters):

A9425D78CAF7FEF256AB75E7321DDC3AE29FC278668D4C9E95842E5F9CE8DBE05
D0C0A9FA8F033F18E16566B65BBAD11C82EC364562DA26EF61D87E3C0B91E99

BCrypt and SCrypt

A more modern approach to password hashing.

Introduced in ColdFusion 2021.

Include automatic hash generation and work factors.

Separate “generate” and “verify” functions.

Most parameters used to generate are included with the result, so updating code is easier
as older hashes will still verify even if you increase the workload on newer hashes.

We don’t have to do it all manually with hash() anymore!

BCrypt Example

Output (fixed-length 60 character string):

$2a$10$xlyn28s5RcvIjeaQmwpRIemzfVy4kgsTEfME2JWdfDLw8E/msCHRm

Includes the BCrypt version, work factor, 22 character base64 encoded salt, and
the 31 character base64 encoded password hash.

BCrypt Example

Output (fixed-length 60 character string):

$2a$10$xlyn28s5RcvIjeaQmwpRIemzfVy4kgsTEfME2JWdfDLw8E/msCHRm

Includes the BCrypt version, work factor, 22 character base64 encoded salt, and
the 31 character base64 encoded password hash.

BCrypt Example

Options are included on the stored hash, so no need to pass them into the
verify function on their own.

Verification takes the same amount of time as generation.

SCrypt Example

Output (variable-length string depending on salt length and key length):

$e0801$84olBR5KPNY=$mPh3FFNHUGCpt5vHa+YusCnwOTsQdSzoftlGmOt3Hwo=

Includes the input parameters, base64-encoded salt, and the resulting hash.

Note: Output is supposed to include a version string at the beginning ($s0), but the CF function does
not include this, so it needs to be added manually for interoperability with other libraries.

SCrypt Example

Options are included on the stored hash, so no need to pass them into the
verify function on their own.

Note: If the original hash came from another application, you will need to strip off the leading
$s0 version identifier before verification.

Argon2id Would be
Even Better

Passkeys are
Coming…

They use asymmetric encryption with
public and private keys and are far more

secure than passwords, but
implementation is a mess right now.

Symmetric Key
Encryption

Asymmetric Key
Encryption

ColdFusion Encryption
Functions

encrypt()
encryptBinary()

decrypt()
decryptBinary()

generateSecretKey()
generatePBKDFKey()

encrypt() Example

Output (pre-update “CFMX_COMPAT”, “UU” encoding):

M:7V/AO-0;O-RH 7$J%*A7TH>G?N=D+\6#:&4D+K.F%ZWEK;%VM.9UZ'3SK 7 4G)S;5:GDC

CFMX_COMPAT (pre-update default) “...uses an XOR-based algorithm that uses a pseudo-random
32-bit key, based on a seed passed by the user as a function parameter.”

Not very secure and should not be used in production.

decrypt() Example

Output:

Secret String

Algorithm Options

Like hash() we can specify an algorithm. Options include:

CFMX_COMPAT – Basic XOR algorithm that uses a string seed to generate a 33bit key. Weak.

DES – Data Encryption Standard (56 bit keys; can be brute forced in several days)

DESEDE – Triple DES (112 or 168 bit keys; 64 bit blocks; deprecated by NIST in 2019)

BLOWFISH – Defined by Bruce Schneier in 1993 (32-448 bit keys; 64 bit blocks)

AES – Advanced Encryption Standard (formerly Rijndael; 128, 192, and 256 bit keys; 128 bit blocks)

Also: RC2, RC4, RC5, PBE, DESX – Don’t use these unless needed for compatibility.

In Short… Use AES

(Preferably with a 256 bit key for quantum readiness)

encrypt() Example with AES

Output:

wP+cd7Dk+I3RRSB56t1DOw==

The AES Algorithm

AES performs a series of transformation rounds (10,
12, or 14 rounds depending on key size) to encrypt
the 128 bits of input data. Each round involves four
key steps:

Sub Bytes (a nonlinear substitution using an S-box),

Shift Rows (a transposition step),

Mix Columns (mixing data within columns), and

Add Round Key (XOR with a round-specific key).

The first and last rounds are slightly modified, with
the last round omitting the Mix Columns step.

Sub Bytes

Shift Rows

Mix Columns

Add Round Key

We Need to Consider
Block Modes

Common Block Modes

ECB – Electronic Code Book; fast and can be run in parallel across CPU threads. Input is cut up
and the same key is applied to every block in the same way. This is fast, but can expose patterns
which can be dangerous depending on your input data. This is the default if “AES” is specified as the
algorithm in the encrypt() function as in our previous example. Not recommended.

“Tux” the Penguin in ECB Mode

“Tux” the Penguin in ECB Mode

Common Block Modes

ECB – Electronic Code Book; fast and can be run in parallel across CPU threads. Input is cut up
and the same key is applied to every block in the same way. This is fast, but can expose patterns
which can be dangerous depending on your input data. This is the default if “AES” is specified as the
algorithm in the encrypt() function as in our previous example. Not recommended.

CBC – Cipher Block Chaining; most secure; slow; must be run in a single thread. The output of each
block is XORed with the previous key to create the key used on the next block. This results in each
block being encrypted with a unique key which defeats patterns, but at the cost of slower processing.
This is the new default after ColdFusion 2023 update 8 and ColdFusion 2021 update 14 when no
algorithm is specified.

“Tux” the Penguin in CBC Mode

“Tux” the Penguin in CBC Mode

ECB vs CBC Modes

Common Block Modes

ECB – Electronic Code Book; fast and can be run in parallel across CPU threads. Input is cut up
and the same key is applied to every block in the same way. This is fast, but can expose patterns
which can be dangerous depending on your input data. This is the default if “AES” is specified as the
algorithm in the encrypt() function as in our previous example. Not recommended.

CBC – Cipher Block Chaining; most secure; slow; must be run in a single thread. The output of each
block is XORed with the previous key to create the key used on the next block. This results in each
block being encrypted with a unique key which defeats patterns, but at the cost of slower processing.
This is the new default after ColdFusion 2023 update 8 and ColdFusion 2021 update 14 when no
algorithm is specified.

CTR / GCM – Counter Mode; reasonable compromise between speed and security. The original key
is used to encrypt a nonce which gets incremented for each block to produce a keystream which is
used to encrypt the plaintext. This allows it to be run in parallel because the key for each block is
predictable and can be easily computed, but also secure because it prevents patterns by using a
unique key for each block. GCM adds integrity checks to CTR.

Honorable Mentions

CFB – Cipher Feedback; similar to CTR in that it creates a keystream, but works on smaller chunks
of data (e.g. 8 bits) rather than the full 128 bit block. It uses the previous block output as input for the
next key, so has to run on a single thread like CBC mode. Does not require padding. Typical uses
include working with stream-based data such as network traffic flows. I have never used it in web
development, but it’s supported by Java and ColdFusion, but we’re not going to discuss it here.

OFB – Output Feedback; also similar to CTR in that is creates a keystream, but uses the previous
block’s key (like CBC) to create the next block key independent of the plain text or cipher text. It runs
more slowly than CTR but isn’t as secure as CBC. It has some special properties that make it good
in situations where error propagation is undesirable, such as real-time communications over radio or
satellite. Again, I’ve never had a use case for web development so we’re going to ignore it for now.

encrypt() Examples with Block Mode

encrypt() Examples with Block Mode

Initialization Vectors

encrypt() Examples with Block Mode

encrypt() Examples with IV

Key Management

Key Sources

Simple string based keys (for CFMX_COMPAT):

Random, variable bit length keys for DES, DESEDE, AES, BLOWFISH, etc...

Derived from a user-provided password (all arguments required; base64 output):

Externally provided

Prohibited Key Storage

Code – Do not include secrets in your code, especially encryption keys. Code gets shared, checked
into source control, and can easily lead to your keys being accidentally leaked.

Default Configuration – If your application gets configured for specific clients or users, do not
provide a “default” key that gets shared by multiple clients or users, as they will be unlikely to change
these. In these cases force them to generate a new unique key as part of initial deployment.

Plain Text – Keys should never be stored in plain text, for example in configuration files, databases,
etc.

With Ciphertext – It should go without saying that you should never store the key needed to decrypt
ciphertext with the ciphertext, e.g. in the same database, unless it has itself been encrypted.

Ideal Key Storage

HSM – Hardware security module, such as the Thales Luna 7 series. These can be deployed as
standalone appliances shared by multiple servers, PCIe cards installed into a server, or USB drives
plugged into a server. These provide for key creation and lifecycle management, as well as
encryption functions so keys never have to leave the device. Applications use an API or integration
with Java for access to services. Expensive; can cost thousands of dollars to deploy.

Cloud-Based Vault – For cloud-hosted applications, distributed applications, or those on a budget, a
cloud-based secrets vault can be a good option. Services such as AWS Secret Manager, Azure Key
Vault, Google Secret Manager, Hashicorp Vault, Conjur, Keeper, Confidant, 1Password, BitWarden,
etc. Typically paid based on usage in a given month.

Local – In a pinch, use local storage on the server such as the Windows Data Protection Application
Programming Interface (DPAPI), a Java keystore file, the Windows Registry, or environment
variables (these last two are not recommended, but options in a pinch).

Database Storage

If you must store symmetric keys in a database, e.g. alongside ciphertext, you
must encrypt the key using encryption of the same strength or greater.

The key used to encrypt the key to your data is called a “Key Encrypting Key”
(KEK) and should be stored in a secure manner away from the encrypted keys
that it protects, such as in an HSM, Cloud Key Vault, etc.

If your KEK is weaker than the key you’re protecting, then the effective
protection provided by your encryption is only as strong as the weakest link in
that chain.

Credit Card Storage

Can’t Steal What You Don’t Store

“In general, no payment card data should
ever be stored by a merchant unless it’s
necessary to meet the needs of the
business. Sensitive data on the magnetic
stripe or chip must never be stored. Only
the PAN, expiration date, service code, or
cardholder name may be stored, and
merchants must use technical precautions
for safe storage.”

-PCI Security Standards Council

Source: https://listings.pcisecuritystandards.org/pdfs/pci_fs_data_storage.pdf

We Have a Business Need...

If you do need to store credit card numbers, for example to facilitate recurring
billing for services, or user convenience for e-commerce, you need to look at
Requirement 3 of the PCI-DSS requirements: “Protect Stored Account Data”.

This can include the Primary Account Number (PAN), Cardholder name,
expiration date, and service code.

“Sensitive Authentication Data” including track data (magnetic stripe), card
verification code, chip data, and PINs may never be stored after a transaction is
completed, including in logs.

Consider storing the “truncated” card number instead (first six and last four):
432109…...4321 which does not require protection (unless paired with a hash)

Three Specific Requirements

3.5 – Primary account number (PAN) is secured wherever it is stored.

3.6 – Cryptographic keys used to protect stored account data are secured.

3.7 – Where cryptography is used to protect stored account data, key
 management processes and procedures covering all aspects of the key

 lifecycle are defined and implemented.

3.5.1 Allows “Strong Cryptography”

Requirement 3.5.1 says the “PAN is rendered unreadable anywhere it is stored
by using [...] strong cryptography with associated key management processes and
procedures.”

They define “Strong Cryptography” to mean:

“Cryptography is a method to protect data through a reversible encryption process, and is
a foundational primitive used in many security protocols and services. Strong
cryptography is based on industry-tested and accepted algorithms along with key
lengths that provide a minimum of 112-bits of effective key strength and proper key-
management practices.

Effective key strength can be shorter than the actual ‘bit’ length of the key, which can lead
to algorithms with larger keys providing lesser protection than algorithms with smaller
actual, but larger effective, key sizes. It is recommended that all new implementations use
a minimum of 128-bits of effective key strength.”

3.6.1.2 Key Management

Requirement 3.6.1.2 defines the requirements for handling keys used for encryption:

“Secret and private keys used to protect stored account data are stored in one (or more)
of the following forms at all times:

• Encrypted with a key-encrypting key that is at least as strong as the data-encrypting
 key, and that is stored separately from the data encrypting key.

• Within a secure cryptographic device (SCD), such as a hardware security module
 (HSM)...”

Code Example...

Key Takeaways
Hashing = Integrity, specifically for passwords

If available, use the SCrypt (preferred) or BCrypt algorithms for password hashing and storage.
Otherwise, use SHA-512 with 600,000 iterations or more and add a unique salt per password.
Consider adding pepper before hashing for additional protection.
Don’t use weak outdated defaults such as MD5, SHA1, etc.

Symmetrical Encryption = Data protection at rest
Use AES unless you need compatibility with another application
Use a 256 bit key unless a weaker key is needed for compatibility
Use the correct block mode for your data

Avoid ECB if possible; it exposes patterns in your data (default if “AES” is specified with no block mode)
Use CBC mode for short data like PII or credit card numbers (most secure: “AES/CBC/PKCS5Padding”)
Use CTR or GCM for larger data like documents (balance of speed and security: “AES/CTR/NoPadding”)

Generate and specify your own IV when possible for better compatibility

Key Management
Never store encryption keys with encrypted data unless they themselves are strongly encrypted with a KEK.
Never store secrets in code; accidental leaks from GitHub are more common than you think
Keys should be stored securely using an HSM if possible, otherwise a Cloud-Based Vault.

Credit Card Numbers
Don’t store unless you really need to. Use strong encryption; AES-CBC w/256 bit key. Use KEK for card keys.

Thanks!

Contact Info:

leviathan@darktech.org
www.darktech.org

www.linkedin.com/in/justinscott

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

